中国教育装备采购网 【立即登录】 【免费注册】
资讯
专题
人物访谈
政府采购
产品库
求购库
企业库
院校库
案例·技术
会展信息
行业日历
体采通

科学家通过非接触式亚微米红外拉曼同步成像技术研究高内相乳液聚合演变过程

中国教育装备采购网 2020/8/3 10:24:55 围观380次 我要分享

  在高内相乳液(HIPE)中,初始离散单元在聚合过程中或之后转变成由窗口高度互联聚合体的时间和方式,一直是一个有争议的问题。其中,以苯乙烯/二乙烯苯作为油相的油包水高内相乳液,是该领域研究的一个热点体系。在诱导聚合过程中,以支化的聚乙烯亚胺(PEI)为亲水端和聚苯乙烯(PS)链作为疏水端。这类大孔表面活性剂可以在大剂量范围内稳定HIPE并导致不同的开孔多聚形态。然而由于受到表征技术的限制,原位探测上述过程详细的机理仍然较为困难。

  Photothermal Spectroscopy Corp研发的光学光热红外(optical photothermal infrared)表面成像新技术可适用于液体环境测试,为探索polyHIPE的窗口形成机理提供了机会。光学光热红外技术通过探测红外光被吸收后所诱导的热响应信号来测试待测样品的红外振动峰,该技术有四大优势:使用可见光为检测光,可以将分辨率提高到 ~ 500 nm;非接触式的光学显微镜;分辨率不依赖于红外光波长;不会产生弥散的伪影。有鉴于此,同济大学万德成教授课题组与Photothermal Spectroscopy Corp合作,利用基于光学光热红外技术(O-PTIR)技术的非接触亚微米分辨红外拉曼同步测量系统mIRage(图1)对polyHIPE的聚合体进行了红外光谱和成像分析,探究其演变过程及形成机理。

科学家通过非接触式亚微米红外拉曼同步成像技术研究高内相乳液聚合演变过程

图1. A) 3%表面活性剂用量诱导的polyHIPE选取区域的光学照片,B)相应的mIRage图(条件: 红色代表强烈的反应,绿色代表几乎没有反应,而黄色代表对1492 cm-1处的激光束的中等反应),C)插图为典型的选定区域附近的局部表面形貌(通过SEM),D) 插图为立方状样品的光学照片(≈5×5×5 cm3)

  如图1B所示,PS对在1492 cm-1处激光束有红外响应,对新鲜的多聚体表面进行该波长激光扫描,发现了三个有代表性的区域。区域1几乎没有PS信号,说明表面完全覆盖 PEI 大孔表面活性剂, 对其他组成不太敏感 , 区域3显示 一 个 强烈红外信号,对应 PS 块体人工样品处理后的横截面。区域2呈现出岛状的PS微区,点缀在大孔表面活性剂覆盖的表面。由此推断,PS微区可能起源于相分离诱导的大孔表面活性剂的析出。

科学家通过非接触式亚微米红外拉曼同步成像技术研究高内相乳液聚合演变过程

图2. 在1600 (绿色)和1492 cm-1(红色)激光束照射下的多聚体表面的mIRage 2D O-PTIR图像。B)一系列的FTIR光谱提取采样点(箭头尾)。每个采样点的高度比为1600/1492 cm-1,如(C)所示,相邻的采样点为250 nm

  进一步对区域2进行1600和1492 cm-1位置逐点热成像扫描得到二维图像(图2A),可以观察到一个不均匀的表面,表明发生了相分离。1600和1492 cm-1的波长分别用绿色和红色表示,PS对1600和1492 cm-1的激光束均有红外响应, PEI也对1600 cm-1的激光束有红外响。因此,如果表面仅仅是由PS决定的,那么1600和1492 cm-1的强度比应该不发生变化。1600/1492 cm-1红外强度比分布图(图2C)以及线性点提取红外光谱(图2B)都可以显示目标位置的表面化学成分,证实了相分离的发生。

  综上所示,非接触亚微米分辨红外拉曼同步测量系统mIRage为polyHIPE表面相分离的存在提供了强有力的证据,有助于未来窗口的发展。

  参考文献:

  [1]. C. H. Li, M. Jin, D.C. Wan, Evolution of a Radical-Triggered Polymerizing High Internal Phase Emulsion into an Open-Cellular Monolith, Macromol. Chem. Phys. 2019, 220, 1900216.

  产品信息:

  非接触式亚微米分辨红外拉曼同步测量系统—mIRage:https://www.caigou.com.cn/product/20191022131.shtml

点击进入QUANTUM量子科学仪器贸易(北京)有限公司展台查看更多 来源:中国教育装备采购网 作者:Quantum量子科学仪器贸易(北京)有限公司 责任编辑:张肖 我要投稿
2020全国教育装备云展会
采购网二维码

扫一扫,欢迎关注

教育装备采购网官方微信

掌握教育装备行业最新、最权威资讯

相关阅读

  • 微塑料研究最前沿丨微塑料监测遇难题,我们该何去何从?

    微塑料研究最前沿丨微塑料监测遇难题,我们该何去何从?
    中国教育装备采购网08-13
    近年来,塑料污染在水环境(海洋和淡水)中的问题日益严重,得到广泛报道和关注。据《Science》杂志研究报告,2010年全球192个沿海国家和地区共制造2.75...
  • 红外光谱的测量极限在哪里?

    红外光谱的测量极限在哪里?
    中国教育装备采购网07-20
    [导读]QuantumDesign公司一直致力于引进先进的红外光谱技术,其中neaspec纳米傅里叶红外光谱仪、微秒级时间分辨超灵敏红外光谱仪在探寻红外光谱测量极...
  • Quantum Design中国公司北京实验室捷报频传—助力中国科研,合作共赢

    Quantum Design中国公司北京实验室捷报频传—助力中国科研,合作共赢
    中国教育装备采购网06-22
    近年来,中国科研迅速崛起,高质量的科研成果层出不穷,捷报频频。为更有效地支持国内科研及应用发展,QuantumDesign中国经过数十年打造了QD中国北京样...
  • 探知电池材料的组成分布变化?非接触式亚微米O-PTIR光谱成像技术强助力!

    探知电池材料的组成分布变化?非接触式亚微米O-PTIR光谱成像技术强助力!
    中国教育装备采购网06-17
    低能量边缘光致发光的研究对提高Ruddlesden-Popper钙钛矿太阳能电池效率有着十分重要的影响和意义。然而对其机制的研究却一直面临着巨大挑战:(1)材...
  • 技术线上论坛 | 6月16日《新技术鉴别高分子/半导体领域里的“渣物质”—非接触式亚微米分辨红外拉曼同步测量》

    技术线上论坛 | 6月16日《新技术鉴别高分子/半导体领域里的“渣物质”—非接触式亚微米分辨红外拉曼同步测量》
    中国教育装备采购网06-11
    [报告简介]红外和拉曼光谱技术一直是高分子、半导体领域样本的重要测试手段。但随着科研更精细化、直观化的需求提升,传统红外与拉曼技术逐渐无法满足...
  • 技术线上论坛 | 6月9日《微塑料追踪鉴定新技术——非接触式亚微米分辨红外拉曼同步测量系统》

    技术线上论坛 | 6月9日《微塑料追踪鉴定新技术——非接触式亚微米分辨红外拉曼同步测量系统》
    中国教育装备采购网06-05
    [报告简介]作为一种新兴污染物,微塑料以纳米、微米到毫米尺度充斥在从海洋到陆地的所有环境里,这些污染物不仅有进入到细胞或生物体内的高风险,甚至...
  • 成果速递 | 亚微米空间分辨同步IR + Raman光谱成像分析 PLA/PHA生物微塑料薄片

    成果速递 | 亚微米空间分辨同步IR + Raman光谱成像分析 PLA/PHA生物微塑料薄片
    中国教育装备采购网05-18
    来源于石油中的塑料产品已经成为现代生活不可分割的一部分,它们性能优异,用途广泛且相对便宜,但同时也引发了人们对于塑料垃圾在环境中累积问题的担...
  • QD中国北京实验室引进美国PSC非接触亚微米分辨红外拉曼同步测量系统-mIRage样机

    QD中国北京实验室引进美国PSC非接触亚微米分辨红外拉曼同步测量系统-mIRage样机
    中国教育装备采购网05-06
    2020年,QD中国迎来了公司的第十六个年头。为满足国内日益增长的红外仪器测试需求,更好的为国内的科研工作者提供专业技术支持和服务,QuantumDesign中...
  • 版权与免责声明:

    ① 凡本网注明"来源:中国教育装备采购网"的所有作品,版权均属于中国教育装备采购网,未经本网授权不得转载、摘编或利用其它方式使用。已获本网授权的作品,应在授权范围内使用,并注明"来源:中国教育装备采购网"。违者本网将追究相关法律责任。

    ② 本网凡注明"来源:XXX(非本网)"的作品,均转载自其它媒体,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责,且不承担此类作品侵权行为的直接责任及连带责任。如其他媒体、网站或个人从本网下载使用,必须保留本网注明的"稿件来源",并自负版权等法律责任。

    ③ 如涉及作品内容、版权等问题,请在作品发表之日起两周内与本网联系,否则视为放弃相关权利。

    2020全国教育装备云展会